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External Finance Constraints and the Intertemporal Pattern of Intermittent
Investment

Abstract

Do external ¯nance constraints a®ect the timing of large investment projects? Simu-
lations of a model with ¯xed capital-stock adjustment costs establish the hypothesis that
external ¯nance constraints lower a ¯rm's investment hazard: the probability of undertaking
a large project today as a function of the time since the last project. Hazard model esti-
mation that controls for productivity and adjustment costs supports this hypothesis. Small
¯rms that distribute cash to shareholders have higher hazards than small ¯rms that do not;
very small ¯rms have lower hazards than small ¯rms; small stand-alone ¯rms have signi¯-
cantly lower hazards than small segments of conglomerates. Finally, accumulation of liquid
assets raises hazards, and accumulation of debt lowers hazards.



I. Introduction

The past ¯fteen years have seen a °ood of empirical studies of the e®ects of external ¯nance

constraints on corporate investment. The connection between ¯nance and investment starts

with any violation of the Modigliani-Miller theorem, usually modeled formally via imperfect

information. These models show that information asymmetry leads to a divergence between

the costs of internal and external funds or, at the extreme, to a rationing of external funds.

However, such models provide little guidance for the direction of empirical work, since few

have both endogenous investment and ¯nance decisions, and since few are couched in terms

of observable variables. Therefore, empirical studies have turned to two loose arguments to

motivate tests of the connection between ¯nance and investment. First, ¯nance constraints

cause an excess sensitivity of investment to internal funds; and second, they a®ect the ¯rm's

incremental intertemporal investment allocation. This paper tackles this topic from a new,

unexploited angle; brie°y, one that examines the e®ects of ¯nance constraints on the timing

of large investment projects.

To understand the contribution of this idea, it is useful to discuss the two basic issues

confronting this line of research. Any empirical examination of the interaction of ¯nance

and investment must specify a \correct" investment model and ¯nd an \accurate" way of

measuring access to external capital markets. Problems arise when both requisites fail. For

example, if the investment model is misspeci¯ed, then to the extent that the measure of

¯nancing constraints is correlated with the explanatory variables left out of the investment

model, any estimates of the e®ects of the ¯nance-constraint proxy on investment will be

biased. On the other hand, if the investment model is well speci¯ed, then, as discussed at

more length in Erickson andWhited (2000), using a noise-ridden proxy for ¯nance constraints

will only dampen the estimated e®ect of this proxy-variable on investment. I will argue and

provide evidence below that my investment model, while not \perfect," is much better than

those used by the bulk of this research and that any noise in my proxies for ¯nance constraints

is unlikely to a®ect my qualitative inference.

A discussion of the progenitors and relatives of the present paper also aids in understand-
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ing its contribution. Most of the empirical research in this area has followed the methods

¯rst outlined in Fazzari, Hubbard, and Petersen (1988), who argued and found that if a

¯rm cannot obtain outside ¯nance, its investment will respond strongly to movements in

cash °ow, holding investment opportunities constant. More recently, however, Kaplan and

Zingales (1997) and Cleary (1999) have provided evidence that cash-°ow sensitivity need not

identify a priori liquidity constrained ¯rms. Further, the simulations in Gomes (2001) and

the empirical work in Erickson and Whited (2000), Bond and Cummins (2001), and Cooper

and Ejarque (2001) have demonstrated that the results from these earlier papers are due

to measurement error in the usual proxy for investment opportunities: Tobin's q. In sum,

these recent papers question whether the large body of research on cash-°ow sensitivity has

taught us much about the way in which external ¯nance constraints a®ect investment. Cash

°ow is correlated with investment, but because the underlying investment model is plagued

by problems of measurement error, this correlation may not be an indication of ¯nance con-

straints. Thus, this newer work has re-opened the door to understanding the mechanism

whereby ¯nance and investment interact.

A di®erent line of research estimates directly the Euler equation of an intertemporal

investment model using generalized method of moments. For example, Whited (1992) and

Bond and Meghir (1994) show that augmentations of the Euler equation that account for

¯nancial constraints improve its ¯t. This approach has the advantage of avoiding the di±cult

problem of measuring q. Euler equation studies have provided convincing evidence that

external ¯nance constraints a®ect the rate of intertemporal substitution between investment

today and investment tomorrow. However, these papers examine only marginal decisions,

since they are based on models with convex capital-stock adjustment costs.

In contrast, common intuition suggests that ¯nance constraints are at least as likely to

alter a ¯rm's decision about undertaking a large project or not; that is, they ought to have

lumpy in addition to smooth e®ects. Loosely speaking, although ¯nance constraints could

a®ect a ¯rm's decision to spread out the building of a new plant over an extra month (a

\marginal" intertemporal decision), they are more likely to a®ect a ¯rm's decision to delay

the entire new-plant project (a \lumpy" intertemporal decision). Further motivation for
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studying ¯nance constraints in the context of lumpy investment comes from studies that

have found a great deal of lumpy adjustment in plant-level data (Doms and Dunne, 1998;

Cooper, Haltiwanger, and Power, 1999). For example, Doms and Dunne (1998) ¯nd that

from 25% to 40% of an average plant's cumulative investment over 17 years is concentrated

in a single year. If, as this evidence suggests, investment decisions are lumpy, then external

¯nance constraints are quite likely to have lumpy e®ects.

To test this idea, I examine the e®ects of ¯nance constraints on a capital stock adjust-

ment hazard: the relationship between the probability of a large change in the capital stock

at a certain point in time and the length of time since the last large change. This sort

of lumpy adjustment is often the outcome of models with nonconvex adjustment costs.1 I

use such a model to establish that the shape of the hazard depends both on the nature of

physical adjustment costs and the presence of ¯nance constraints. In the model lumpiness

is optimal because the ¯rm only invests when its capital stock is su±ciently far from the de-

sired level, otherwise preferring to remain inactive to avoid any lump-sum costs. Therefore,

after a recent adjustment, the desired capital stock is close to the actual, and the probability

of another large adjustment is low. As time elapses, it becomes more likely that cumulated

productivity shocks and depreciation will have changed the marginal pro¯t of capital suf-

¯ciently to warrant further investment. In other words, the hazard slopes up. Evidence

of upward sloping hazards has been found in plant-level data by Cooper, Haltiwanger, and

Power (1999). External ¯nancial constraints act as an additional cost of adjusting the capital

stock, thereby furthering the delays between episodes of intense investment. The hazard of

a constrained ¯rm will lie below that of an otherwise identical unconstrained ¯rm.

I then test the idea on a sample of ¯rms and segments of ¯rms from COMPUSTAT. These

data have the obvious disadvantage that a ¯rm, especially a large ¯rm, is an aggregation

of several di®erent decision making units. If these individual units act in unison, then their

behavior should resemble the behavior of an individual unit, and investment should occur

1Models with ¯xed costs of adjustment have been used to show that lumpy adjustment
and inactivity characterize a wide variety of economic decisions. For a model of inventories,
see Caplin (1985); for a model of durables consumption, see Eberly (1994); for a model of
capital structure, see Fischer, Heinckel, and Zechner (1989); and for a model of portfolio
choice, see Vayanos (1998).

3



episodically. However, this scenario is unlikely; and to the extent that these individual

units act asynchronously, their aggregated investment will appear to be smoothed out over

time. This problem could confound any empirical ¯ndings. For example, if I compare the

investment of a ¯rm composed of many units with the investment of a ¯rm composed of

one unit, then the two may have very di®erently shaped hazards even though neither face

external ¯nance constraints. To mitigate this problem, I limit my sample to small segments

of conglomerates and small single-segment ¯rms, since small segments or single-segment ¯rms

are less likely to be composed of a large number of decision making units.

Estimates obtained from these samples show evidence of upward sloping hazards, sug-

gesting that it is appropriate to use a framework of nonconvex adjustment to study external

¯nance constraints. The central contribution of the paper, however, is new evidence of the

interdependence of ¯nance and investment. I ¯nd that groups of a priori constrained ¯rm

have lower hazards than their unconstrained counterparts. Small ¯rms that distribute cash

to shareholders have higher hazards than small ¯rms that do not; very small ¯rms have

lower hazards than small ¯rms; and small stand-alone ¯rms have lower hazards than small

segments of conglomerates. I also ¯nd that accumulation of liquid assets raises hazards and

that accumulation of debt lowers hazards.2

The paper is organized as follows. Section 2 outlines a simple model that incorporates

both ¯xed capital-stock adjustment costs and external ¯nance constraints, and Section 3

presents the model simulations. Section 4 describes the data. Section 5 discusses estimation

strategies and contains the hazard model results, and section 6 concludes. The details of the

simulation are in the appendix.

II. A Simple Model of Lumpy Investment

To motivate the empirical work below, and especially to provide structure for the choice of the

control variables in my estimation, I consider a discrete-time partial-equilibrium model of a

2This paper leaves to further research the failure of previous empirical investment stud-
ies to isolate any di®erences between costly external ¯nance and a hard ¯nance constraint.
Therefore, throughout the paper I use the terms \external ¯nance constraints" and \costly
external ¯nance" interchangeably. The word constraint should be interpreted as a surpass-
able obstacle, rather than an unsurpassable obstacle.
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producer that uses current-period capital, K, to produce output. The producer's per period

revenue function is given by ¦ (K; z), where ¦ (0; z) = 0, ¦z (K; z) > 0, ¦K (K; z) > 0,

¦KK (K; z) < 0, and limK!1¦K (K; z) = 0. z is a combination demand/productivity shock,

observed by the producer before he makes his current period decisions, but not observed by

the econometrician. It has support on the interval (0;1) and has a stationary Markov

transition function q (z0; z), where a prime denotes a variable in the subsequent period.

¦ (K; z) can be thought of as a reduced-form production function where variable factors

of production have already been maximized out of the problem. The concavity of ¦ (K; z)

results from decreasing returns in production and/or a downward sloping demand curve.

The ¯rm purchases and sells capital at a price of 1 and incurs a ¯xed cost, cK, whenever

investment is not equal to zero. The ¯xed cost is proportional to the capital stock so that

the ¯rm can never grow out of the ¯xed cost. Other sources of lumpy adjustment, such as

irreversibility, indivisible capital goods, and di®erent puchase and sale prices for capital, can

be though of as examples or extreme cases of nonconvex adjustment costs. :

The capital stock evolves according to a standard capital stock accounting identity:

I ´ K 0 ¡ (1 ¡ d)K; (1)

where d is the constant rate of depreciation, 0 < d < 1. The producer is risk neutral and

maximizes the value of future cash °ows, discounting them at a constant factor, ¯, 0 < ¯ < 1:

This model can be thought of either as a partial equilibrium model of a ¯rm or, equivalently,

as a model of a general equilibrium economy with production and consumption, where a

representative consumer has utility linear in both consumption and leisure.3

Thus far the model is fairly standard and says nothing about ¯nancing costs. It would be

ideal to model external ¯nance costs endogenously. However, for the purpose of understand-

ing the behavior of investment hazards, such an approach becomes analytically intractable.

Therefore, I model external ¯nance costs loosely after the idea of the pecking-order theory

of capital structure, (Myers, 1984). Following Gomes (2001), I assume that whenever the

optimal choice of I remains smaller than revenue, the ¯rm uses internal funds for investment.

3Adding risk aversion or decreasing marginal utility of leisure to the model changes its
quantitative but not qualitative predictions.
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However, whenever desired investment exceeds revenue, the ¯rm can only proceed if it ob-

tains external funds at a premium. This assumption can be thought of as the outcome of a

an information theoretic model of external ¯nance. To quantify the idea I de¯ne the excess

of desired investment over revenue as e (K; z) ´ I¡¦ (K; z) and then specify a ¯nancing cost

function Á (e (K; z)) ; where Á (e (K; z)) = 0 if the ¯rm faces no external ¯nance constraints

or if e (K; z) · 0. If e (K; z) > 0, Á (e (K; z)) > 0 and Áe (e (K; z)) > 0: Note the discrete

di®erence between the cost of funds when the ¯rm moves from internal to external sources.

Although the ¯nancing function is uninformative about the source of external funds, it is

nonetheless appropriate for a model that focuses on investment behavior.4

Let V (K; z) denote current value of the ¯rm and de¯ne it as:

V (K; z) = max
n
V i (K; z) ; V n (K; z)

o
; (2)

where the superscripts \i" and \n" refer to investment and no investment, respectively. The

corresponding Bellman equations are

V n (K; z) = ¦ (K; z) + ¯
Z
V (K (1 ¡ d) ; z0) dq (z0; z) (3)

V i (K; z) = max
I

½
¦(K; z)¡I¡cK¡Á(I¡¦(K; z))+¯

Z
V (K 0; z0) dq(z0; z)

¾
: (4)

Note that de¯nition of Á (¢) allows (4) to represent the decisions to invest both with

and without external ¯nance. A unique solution to this maximization problem requires that

¦K (K; z) [1 + Áe (e (K; z)) eK (K; z)] be decreasing in the capital stock. The existence of

a unique solution to (2) is then guaranteed by Theorem 9.6 in Lucas and Stokey (1989).

I characterize the solution to this problem by the value function V (K; z) and the policy

function I = g (K; z) :

III. Simulations

I investigate the implications for the solution to this problem via simulation. In order to

do so, I need to choose functional forms for the revenue, adjustment cost, and ¯nancing

4Instead of using a ¯nancing function to model costly external ¯nance, one can specify
that I · A; where A is the stock of ¯nancial assets, which are governed by the intertem-
poral budget constraint A0 = A=¯ + ¦(K; z) ¡ I: This model produces identical qualitative
conclusions.
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functions and the stochastic process for the productivity shocks. I also need to assign values

to the ¯xed cost of adjustment, the discount factor, and the depreciation rate. Because I am

not literally estimating this structural model, the intent of the design is simply to generate

qualitative conclusions that are robust to perturbations in the design parameters and to the

time series properties of the shock. Details are in the appendix.

I solve the model via value function iteration, which yields the policy and value functions.

Whether constrained or unconstrained, the ¯rm follows a two-sided (S; s) policy, with a single

return point if the ¯rm is unconstrained or if the ¯rm is constrained but chooses not to use

external ¯nance. The policy has two return points if the ¯rm is constrained and does use

external ¯nance. It is worth noting that even though the ¯rm can make small adjustments,

it chooses not to. Further, the inaction bands are much wider for a constrained ¯rm than for

an unconstrained ¯rm. I simulate the model for 10,000 time periods to generate the hazard

functions. In these simulations I de¯ne an adjustment or \spike" as a rate of net investment

that exceeds 20%.5

Figure 1 presents the hazard functions from the simulations of the constrained and

unconstrained ¯rms. In this ¯gure the horizontal axis measures the amount of time since

the previous adjustment of the capital stock, and the vertical axis measures the adjustment

hazard. Notice the di®erence between the hazards of the unconstrained and constrained

¯rms. The hazard of the unconstrained ¯rm slopes upward steeply, which, as noted in

the introduction, is a pattern consistent with the presence of ¯xed costs of adjustment.

The hazard of the constrained ¯rm also slopes upward, but it is lower. Because the ¯rm

essentially faces an extra ¯xed cost of adjusting its capital stock, it will do so less frequently.

The external ¯nance function a®ects not only the cost of adjustment but the marginal

productivity of capital. On the margin capital not only adds to production, but it alleviates

the external ¯nance premium. This addition to the marginal productivity of capital will

raise the investment hazard, since a ¯rm should adjust more often if it is more productive.

However, because of decreasing returns to scale, the direct negative cost-of-adjustment e®ect

5Although I use a variety of thresholds in the following hazard estimations, for expositional
brevity I limit myself to one threshold in my simulations.
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is stronger. This result is robust to a wide variety of di®erent model parameterizations.

Although the di®erences in the hazards of constrained and unconstrained ¯rms is an

empirically testable implication of my model, a number of other factors a®ect hazards:

factors that need to be accounted for in any tests. One such important issue is aggregation

of asynchronous actions within a ¯rm. The e®ects of aggregation are illustrated in Figure

2, which contains graphs of the hazards from two types of \conglomerate" ¯rms, where

each type can be constrained or unconstrained. I construct the conglomerates by assuming

they are composed of either two or six i:i:d: units, each of which is identical to the unit

represented in Figure 1. For each type of conglomerate, I allow the individual units to be

either all constrained or all unconstrained. Because the conglomerates are composed of i:i:d:

units, they represent a worst-case scenario of the di±culties induced by aggregation, since a

¯rm composed of units whose decisions are positively correlated will behave in a manner more

like an individual unit. As in Figure 1, the hazard for the constrained \small" conglomerate

in Figure 2 lies below the hazard for the unconstrained small conglomerate, though both

are lower than those in Figure 1. The pattern exhibited by the pair of hazards for the

\large" conglomerates is quite di®erent: both are at the same low level. Here, because of the

asynchronous actions of the conglomerate units, and because the rate of investment contains

total conglomerate assets in the denominator, the rate of investment for the conglomerate

as a whole rarely crosses a spike de¯ning threshold, even though the individual units of the

conglomerate behave exactly as those depicted in Figure 1. Also, adding costly external

¯nance to the model a®ects the hazard little, because the e®ect of aggregation dwarfs the

e®ect of the ¯nance constraint. Although not modeled here, the inclusion of an internal

capital market in the conglomerate would further diminish the di®erence in the behavior of

the constrained and unconstrained conglomerates. Segments of a constrained ¯rm that do not

adjust in any given period could devote their pro¯ts to the segments that do ¯nd it optimal

to adjust. This simulation result underlines the importance of considering aggregation when

trying to uncover the e®ects of external ¯nance constraints with COMPUSTAT data, which

covers many large diversi¯ed ¯rms.

Three further factors that could a®ect the heights of the hazards are productivity, ad-
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justment costs, and depreciation. Starting with the model of an unconstrained ¯rm, to model

high productivity, I adjust the mean of the innovation of z to be 0.1 rather than 0; to model

high adjustment costs, I double the value of c; and to model high depreciation, I double

the value of d. The results from these experiments are in Figure 3, where the hazard of the

more productive ¯rm is higher than that of the unconstrained ¯rm, the hazard of the ¯rm

with high adjustment costs is lower, and the hazard of the ¯rm with high depreciation is

higher. The intuition behind these ¯ndings is that ¯rms with high productivity, low adjust-

ment costs, or high depreciation should optimally want to replace capital more often, all else

equal. This theoretical ¯nding indicates the importance of controlling for all of these factors

when comparing the hazards of di®erent groups of ¯rms. One further factor that could a®ect

the hazard is the variance of the innovation to z. However, changes in this variable a®ect

the hazard little under a wide variety of model parameterizations. Intuitively, when z has a

high variance, the marginal product of capital is more likely to hit one of the thresholds. On

the other hand, the ¯rm will respond by widening the inaction interval. These two e®ects

appear to cancel each other out. For similar intuition, see Bertola and Caballero (1990).6

Finally, it is worth noting that the hazard of a ¯rm facing convex adjustment costs slopes

downward. Intertemporal smoothing induced by this convexity implies that a large invest-

ment is likely be followed closely by another, but is less likely to be followed by another in the

distant future. Therefore, examining the slope of the hazard provides information on whether

an environment of nonconvex adjustment is indeed appropriate for understanding external ¯-

nance constraints. Intense episodes of investment can occur with convex adjustment costs, if

productivity shocks are high-variance and persistent. However, convexity nonetheless causes

intertemporal investment smoothing so that investment will not be \lumpy."

IV. Data and Summary Statistics

My data are from the combined annual, research, and full coverage 2001 Standard and Poor's

COMPUSTAT industrial ¯les that are also covered by the COMPUSTAT business informa-

6All of these results can also be obtained from a model in which a ¯rm with assets in place
encounters growth options that arrive randomly. In this sort of model a \productive" ¯rm
is one in which these options arrive at a high rate.
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tion ¯les, which cover the years 1982 through 2000. In late 1997 SFAS 131 changed the way

in which ¯rms de¯ne their segments. The concepts of industrial and geographic segments

have been replaced by \operating segments" as de¯ned by the company's management. This

change renders data from 1998 inconsistent with earlier data. Because I want long consistent

time series on the segments, I only use data from 1982 until 1997.

I select the sample by ¯rst deleting any ¯rm-year observations with missing data. Next,

I delete any observations for which total assets, the gross capital stock, or sales are either

zero or negative. Further, I delete any observations if the sum of segment assets deviates

by more than 25% from reported total ¯rm assets. Finally, I include a ¯rm or segment only

if it has at least ¯ve consecutive years of complete data; and I omit all ¯rm- and segment-

level observations whose primary SIC classi¯cation is between 4900 and 4999 or between

6000 and 6999, since my model of investment is inappropriate for regulated or ¯nancial

¯rms. Note that if a manufacturing conglomerate has, for example, a ¯nancial subsidiary,

the conglomerate will be in the sample, but that subsidiary will not. I end up with between

1018 and 2082 single-segment ¯rms per year, between 563 and 952 multiple-segment ¯rms

per year, and between 1358 and 2640 segments of multiple-segment ¯rms per year.

Table 1 provides summary statistics for ¯ve subsamples: large and small single-segment

¯rms, multiple-segment ¯rms, and large and small segments of these multi-segment ¯rms. I

classify a ¯rm or segment as \small" if its real assets are below the thirty-third percentile

of the real assets of the stand-alone ¯rms in the ¯rst year that the ¯rm or segment in

question appears in the sample. Three aspects of this de¯nition are important. First,

de¯ning smallness on a year-by-year basis allows for real growth in the cuto® point. Second,

the composition of the samples does not change. Third, this type of de¯nition allows me to

avoid serious sample selection issues that could arise by isolating only slow-growing ¯rms.

On one hand, ¯rms or segments that grow quickly and perhaps become \not-small" remain

in the sample, exacerbating the aggregation issues discussed above. On the other, the data

analysis below suggests that this issue is minor in the samples of small ¯rms and segments.

Table 1 shows that the multi-segment ¯rms are substantially larger than even the large

the single-segment ¯rms. Note also that the small segments and small stand-alone ¯rms
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are indeed quite small: their mean real assets are only 12.1 and 14.7 million 1997 dollars,

respectively. Aggregation is therefore unlikely to be an important issue for either group.

These two groups do have some important di®erences: the small single-segment ¯rms have

much higher sales growth than the small segments, and the segments have slightly higher

cash °ow and investment.

Table 2 examines the extent to which ¯rms engage in large investment projects. Since

most ¯rms in COMPUSTAT invest at least a small bit every period, the de¯nition of a

large project requires thought. Low observed rates of investment probably occur because of

maintenance and because some types of investment may well be subject to convex adjustment

costs. However, when a ¯rm undertakes a large project, one ought to observe a much higher

than normal rate of investment. To capture this idea I de¯ne an investment \spike" in terms

of the deviation of the ratio of investment to total assets from the two-digit industry mean

of this ratio. Using an industry-speci¯c measure of a spike allows cross-sectional variation

in the \normal" rate of investment across industries. I de¯ne a spike as an observation in

which the ratio of investment to assets is greater than 1, 1.5, or 2 standard deviations from

the mean. I use several spike thresholds in order to check the robustness of my results to

the criteria for measuring spikes.7 This table provides some prima facia evidence of ¯xed

costs of adjustment, since in a world with convex adjustment, I ought to see very few rates

of investment greater than any of my spike thresholds. The table shows that this is not the

case. The percentage of small single-segment ¯rms or segments experiencing one standard-

deviation spikes is not much smaller than the 14 percent ¯gure reported by Cooper and

Haltiwanger (2002). This similarity suggests that the sort of lumpy adjustment observed in

plants may also be present in ¯rms.

The rest of the table examines inaction spells. For each group of observations, I present

the number and average length of spells corresponding to each of my spike-de¯ning thresh-

olds. The conglomerates and the large ¯rms and segments have longer spells than either

the single-segment ¯rms or the segments|a result consistent wiht the aggregation of asyn-

7An earlier version of this paper de¯nes a spike as an instance when net investment crosses
a ¯xed threshold. Results using this sort of de¯nition are broadly similar.
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chronous actions. The similar investment rates across the small segments and small ¯rms

manifest themselves here in the similarity between their mean spell lenght. Given the di®er-

ence in sales growth, one would expect the single-segment ¯rms to be adjusting more often;

so perhaps external ¯nance constraints are hindering adjustment. Providing more speci¯c

evidence of this conjecture is the subject of the rest of the paper.

V. Estimation

A. Methods

Two strategies have dominated the empirical literature on estimating and testing investment

models with nonconvexities. First, as illustrated, for example, in Caballero, Engel, and

Haltiwanger (1995) and Caballero and Engel (1999), one can construct a measure of the

\gap" between the ¯rm's actual and desired capital stock, where the latter typically comes

from a theoretical frictionless model. Testable hypotheses emerge from this characterization

because the reaction of investment to the gap depends on the nature of adjustment costs.

However, as pointed out in Cooper and Willis (2001), because specifying an optimal capital

stock requires a speci¯c structural model and because an optimal capital stock needs to be

de¯ned in terms of a model with frictions, it is easy to mismeasure the gap: a problem that

can lead to misleading inferences. This problem is analogous to the di±culty of measuring

q, and it is also a generic problem with estimation of a structural model, since the resulting

inferences can be fragile with respect to the choice of model assumptions.

The second method, less structural, method is hazard estimation. I have opted for

this second approach primarily to minimize measurement problems. A number of di®erent

techniques exist for estimating hazard functions. The simplest method consists of calculating

for each length of an inaction spell and for each year, the ratio of the number of ¯rms that

experience spikes to the number of all ¯rms that have remained inactive for at least as long.

These simple empirical hazards could then be compared to the simulated hazards. However,

this approach can lead to biased hazard function estimates unless one controls for cross-

sectional heterogeneity. To see this point in the context of investment spikes, suppose we

observe a cross section containing two types of ¯rms that face ¯xed adjustment costs: low
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cost and high cost. Suppose also that there are twice as many low cost ¯rms as high cost

¯rms. If we could observe a long time series on each ¯rm, all would have upward sloping

hazards. However because the low cost ¯rms replace their capital more often than the high

cost ¯rms, in a cross section we see more replacements of relatively new capital than of older

capital, and a simple empirical hazard will slope downward.

Di±culties such as this can be solved by using a duration model, since it is possible to

account for observable time-varying covariates, such as productivity, as well as unobservable

heterogeneity across ¯rms. Loosely speaking, an empirical hazard can be thought of as a

sort of histogram, whereas the results from estimating a duration model can be thought

of as a \conditional" histogram. The most likely candidate for the source of unobservable

heterogeneity is the level of adjustment costs, since I can control for other important non-

¯nancial determinants of investment. Caballero and Engle (1999) emphasize that cross-

sectional heterogeneity in adjustment costs is likely to exist, and they ¯nd that a structural

investment model that allows for heterogeneity explains aggregate investment better than a

model that does not. Using a model that incorporates cross-sectional heterogeneity lowers

the probability that my results are an artifact of an incidental correlation between real

adjustment costs and measures of access to external ¯nancial markets.

I use the estimation technique in Meyer (1990), which accounts for observable and un-

observable heterogeneity, and which allows the shape of the hazard to be estimated non-

parametrically. The following brief description of this technique follows Meyer (1990), who

starts with a proportional hazards speci¯cation:

¸i (t) = ¸0 (t) exp
³
xi (t)

0 ¯
´
;

where ¸i (t) is the hazard function, xi (t) is a column vector of covariates, ¯ is the correspond-

ing vector of unknown coe±cients, and ¸0 (t) is called the baseline hazard. The parametric

part of this speci¯cation is the linear modelling of the covariates. The nonparametric part

is the baseline hazard, which is not restricted to take any particular shape. Note that the

existence of the covariates allows the hazard to shift up and down depending on their values

and on ¯. Equivalently, the existence of the covariates essentially changes the units in which
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time is measured.

Estimating the parameters of a hazard function is exactly analogous to estimating the

parameters of a density. However, since time is measured at discrete intervals, to write down

a likelihood function, it is convenient to express the hazard at time t as the product of the

hazards for the time intervals leading up to time t. As a ¯rst step in this process, note that

the probability that an inaction spell will last until time t + 1, given that it has lasted to

time t can be written as a function of ¸i (t) as follows:

Pr (Ti ¸ t+ 1 j Ti ¸ t) = exp
·
¡

Z t+1

t
¸i (s) ds

¸
(5)

= exp
·
¡ exp

³
xi (t)

0 ¯
´ Z t+1

t
¸0 (s) ds

¸
:

De¯ne

° (t) ´ ln
µZ t+1

t
¸0 (s) ds

¶
:

Then (5) can be written as

Pr (Ti ¸ t+ 1 j Ti ¸ t) = exp
h
¡ exp

³
xi (t)

0 ¯ + ° (t)
´i
:

I can use this speci¯cation to write down the likelihood function. First, de¯ne Ci as the

censoring time for an individual inaction spell. For example, if a ¯rm experiences a spike in

1994, if it never experiences another, and if the data on the ¯rm end in 1997, the censoring

time is three. I also censor any spell lengths longer than seven years, where I have chosen this

number because it is the largest for which I can estimate all of the elements of ° (t) for all of

my samples. Depending on the spike threshold and sample, this seven-year rule a®ects from

7.6 to 28.2 percent of the observations, where, not surprisingly, the larger percentages occur

in the samples of large ¯rms, who have long spells. The likelihood function that accounts

for this sort of right censoring for a sample of N individual spells can be written as

L (°; ¯) =
NY

i=1

8
<
:

h
1 ¡ exp

³
¡ exp

³
xi (hi)

0 ¯ + ° (hi)
´´i±i £

hi¡1Y

t=1
exp

³
¡ exp

³
xi (t)

0 ¯ + ° (t)
´´

9
=
; ;

where ° ´ [° (0) ; ° (1) ; : : : ° (T ¡ 1)]0, ±i = 1 if Ti · Ci and 0 otherwise, and hi =

min (Ti; Ci) : The ¯rst term in square brackets is 1 if the inaction spell is censored, and
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the second term is just the probability of a spell lasting at least until hi: The corresponding

log-likelihood can be written as

L (°; ¯) =
NX

i=1

2
4±i ln

h
1 ¡ exp

³
¡ exp

³
xi (hi)

0 ¯ + ° (hi)
´´i

¡
hi¡1X

t=1
exp

³
xi (t)

0 ¯ + ° (t)
´
3
5 :

(6)

As this point, although the empirical model can account for observable heterogeneity

via the inclusion of xi (t), it still does not account for unobserved heterogeneity. To address

this issue, I once again follow Meyer (1990) and assume that unobserved heterogeneity takes

a multiplicative form:

¸i (t) = !i¸0 (t) exp
³
xi (t)

0 ¯
´
:

Here !i is a random variable that is assumed to be independent of xi (t). To construct a

tractable log-likelihood function, one usually assumes a parametric functional form for the

distribution of !i. A commonly-used distribution is a gamma with a mean of one. In this

case the log-likelihood is

L (°; ¯) =
NX

i=1
ln

8
><
>:

2
41 + ¾2

hi¡1X

t=1
exp

³
xi (t)

0 ¯ + ° (t)
´
3
5
¡(1=¾2)

(7)

¡±i
2
41 + ¾2

hiX

t=1
exp

³
xi (t)

0 ¯ + ° (t)
´
3
5
¡(1=¾2)9>=

>;
;

where ¾ is the variance of the gamma distribution.8 The estimation procedure chooses the

shape of the hazard to maximize the likelihood of observing the inaction spells in the sample.

My speci¯cation of the model allows xi (t) to contain sales growth, two-digit industry

dummies, and year dummies. The year dummies allow the hazard function to be conditioned

on aggregate shocks to interest rates and the business cycle. The industry dummies capture

several important factors that could a®ect the hazard. First, di®erences in competitiveness

across industries could have a strategic a®ect on a ¯rm's decision to invest. Second, di®er-

8It is possible to model heterogeneity as in Cooper, Haltiwanger, and Power (1999) as
a discrete number of ¯rm types. Another possibilty is nonparametric estimation of the
distribution of !i, as in Horowitz (1999). However, using these techniques on my sample
produces large standard errors, undoubtedly because these more nonparametric estimation
methods have greater data requirements.
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ences in the types of capital used across industries could a®ect depreciation rates, di®erences

in returns to scale, and adjustment costs.

I also need some control for \investment opportunities." Given adjustment costs, the

adjustment hazard depends only on the probability of the ¯rm reaching an adjustment

trigger, which in turn depends primarily on the expected rate of increase in the marginal

product of capital. Therefore, in this model \investment opportunities" is not equivalent to

marginal q, but to this speed. Indeed, Caballero and Leahy (1996) show that in the presence

of ¯xed costs of adjustment that occur with each project (as opposed to per unit of time), the

relationship between investment and marginal q is not a function but a correspondence. The

non-¯nancial determinants of the rate of reaching an adjustment trigger are the mean of the

innovation to the z shock, the depreciation rate, and returns to scale. Because technology

determines the second two factors, and because technology is likely to vary more across

industries than across ¯rms within an industry, the industry dummies control for much of

the variation in these components of investment opportunities. I include the ratio of cash

°ow to assets as an admittedly imperfect proxy for the mean of the innovation to the z

shock.

Although the proxy is imperfect, the model can shed some light on its quality, and

cash °ow is, in itself, an easily-measured variable. It is straightforward to show in my

model that if the ¯rm invests just enough to replace depreciated capital, expected cash

°ow is proportional to the population mean of the innovation, and observed cash °ow is

proportional to the innovation. Therefore, the correlation between z and cash °ow will be

one. Since optimal behavior implies that ¯rms either remain completely inactive or invest

in large spikes, average cash °ow will be an imperfect proxy for the mean of the innovation.

However, if in a simulation mean cash °ow and the innovation mean are highly correlated,

the proxy should at least theoretically be of high quality. Using the model of the previous

section I simulate 1000 ¯rms, where for each the innovation mean is drawn from a truncated

lognormal distribution. The squared cross-sectional correlation between the innovation mean

and average sales growth is 0.861. In other words variation in average sales growth accounts
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for 86.1 percent of the variation in the innovation mean.9 Because this ¯gure is quite high,

I have con¯dence that the qualitative nature of the following results is unlikely to be an

artifact of measurement error. In contrast, the corresponding ¯gure for Tobin's q found by

Erickson and Whited (2000) is only approximately 40 percent.

A few further remarks about this proxy are in order. First, with the additional con-

dition of a homogeneous revenue function, expected sales growth is equal to the mean of

the innovation to the z shock. Using sales growth as a proxy produces identical qualitative

inferences. However, because using both proxies results in insigni¯cant coe±cients on sales

growth, for brevity, I report only those results obtained by including cash °ow. Second,

many authors have argued that cash °ow contains information about liquidity in addition

to information about pro¯tability. However, this ambiguity is irrelevant for the problem at

hand, because if cash °ow does indeed proxy for internal liquidity, any estimated di®erences

in hazard height will not be due to this liquidity e®ect but to the information in my sample

splitting variables on access to external capital markets. Finally, the use of current pro¯ts or

cash °ow as a proxy for investment opportunities also occurs in the Euler equation literature

mentioned in the introduction. This similarity is not accidental, since both hazard estima-

tion and Euler equation estimation only need to control for capital productivity in the period

between investment expenditures. This task is substantially easier than controlling for the

expected present value of all future capital productivity, which is required by reduced-form

investment regressions.

The question remains as to the justi¯cation for this proportional hazards assumption. To

approach this issue, I examine the performance of the model in my simulated economy. For

this experiment, I take 40 draws of the innovation to the z shock from a truncated lognormal.

For each of these individual draws, I then take 40 draws of the adjustment cost parameter,

c, from a truncated lognormal, leaving me with 1600 combinations. For each combination

I then use both my constrained and unconstrained models to simulate 100 years of data,

using only the last 20 as my \sample." I end up with 3200 \¯rms" over 20 \years." The

9Using actual instead of average cash °ow in the estimation produces identical results,
since the estimation procedure averages observed cash °ow.
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estimation results are shown in Figure 4. Here, the solid lines represent theoretical hazards,

and the dotted lines represent \estimated" hazards. Note that the model does indeed do

a good job of estimating the upward slope of the hazards as well as the height di®erence

between the hazards of the constrained and unconstrained ¯rms. Although no guarantee

that the duration model will perform well on real data, this result is a necessary condition

for the duration model to be able to uncover hazard shape and height.

B. Results

I use this model to compare the estimated hazards of ¯rms and segments categorized along

three dimensions: size, diversi¯cation, and access to external ¯nancial markets. First, how-

ever, I examine the importance of controlling for cross-sectional heterogeneity, using my

sample of small single-segment ¯rms. I focus on this sample because it is involved in all of

the tests that follow. Table 4 presents the results from estimating two models: one that

controls for cross-sectional heterogeneity and one that does not. The estimated coe±cients

on the year and industry dummies are omitted and are almost always signi¯cant in all of

the results that follow. Each column contains the estimates corresponding to each of the

di®erent spike thresholds|1, 1.5, and 2 standard deviations. The log-likelihoods from the

no-heterogeneity models on the right are much lower than the log-likelihoods from the mod-

els on the left, which do control for heterogeneity. Indeed, standard likelihood ratio tests

produce rejections of all of the no-heterogeneity models. Consistent with this result is the

signi¯cance of the estimates of the heterogeneity variance, which are labeled ¾2. The most

interesting aspect of the table is the comparison of the baseline hazards, which are indicated

by the entries labeled \exp (°i) :" For example, the estimate of exp (°3) is the probability of

ending an inaction spell, conditional on the spell lasting at least three years. Note that all

of the estimated hazards from the heterogeneity model slope upwards; that is, the estimates

of exp (°i) increase with i: This result is broadly consistent with one of the predictions from

the theoretical model: ¯xed costs of adjustment result in upward sloping hazards. In con-

trast, the estimated hazards from the no-heterogeneity model slope downwards. The stark

di®erences in the slopes of the baseline hazards from the two models can be seen in Figure

18



5, which presents the estimates from the two standard deviation threshold columns. The

di®erence in slope indicates that for the small single-segment ¯rms, the cross-sectional pat-

tern of investment spikes does not match the pattern for any particular ¯rm. The result can

be understood as follows: the inclusion of heterogeneity in this hazard model acts loosely as

the inclusion of ¯xed e®ects in a panel-data model in that both isolate the behavior of an

individual over time. Given the superior performance of the heterogeneity model, all results

that follow will be from this speci¯cation.

Next I examine the hazards from groups of ¯rms categorized by size and diversi¯cation.

As explained in the previous section, investment by large ¯rms or segments is more likely

to be the product of aggregated asynchronous decisions, and hazard estimates from these

groups are unlikely to be upward sloping. Table 5 contains hazard model estimates for large

single-segment ¯rms and large conglomerates. The most important result in Table 5 is the

low °at baseline hazards for both groups. This ¯nding is consistent with the prediction of

the theoretical model that aggregation lowers hazards. A related di®erence is the insigni¯-

cance of the estimates of the heterogeneity variance. Roughly speaking, for these ¯rms, the

cross-sectional distribution of spells is close to the °at individual time-series distribution.

Finally, this evidence has an important implication for the empirical investment literature

that uses ¯rm size as a proxy for access to external ¯nancial markets.10 Any di®erences

in the behavior of small versus large ¯rms may be due to aggregation issues rather than

¯nance constraints. The evidence in Table 5 does admit, however, a clear alternative inter-

pretation: aggregation issues are unimportant, conglomerates and large single-segment ¯rms

face ¯nance constraints, and small single-segment ¯rms do not. Although implausible, this

possibility begs for an attempt to disentangle ¯nance e®ects from aggregation e®ects.

To do so, I concentrate my analysis on small single-segment ¯rms and small segments of

conglomerates, focusing on my central categorization criterion|access to external ¯nancial

markets. By excluding large stand-alone ¯rms, large segments, and diversi¯ed ¯rms from

10Studies that use size as a proxy for ¯nancing constraints include Gilchrist and Himmelberg
(1995), Kaplan and Zingales (1997), and Erickson and Whited (2000). The ¯rst claims that
small ¯rms appear more constrained than large ¯rms; the second claims that small ¯rms
appear less constrained than large ¯rms; and the third ¯nds no evidence of constraints in
either.
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the analysis, I hope to mitigate the aggregation e®ects that could contaminate my results.

Following much of the literature on external ¯nance constraints, my primary tests of the

interaction between ¯nance and investment are based on comparing the behavior of subsam-

ples of ¯rms. The null hypothesis for the three such tests that follow is that the baseline

hazard is the same across groups of observations classi¯ed by indicators of access to external

¯nance. Note that the rest of the hazard is allowed to vary across groups. This feature is

important, since constraining the reaction of investment spikes to the variables included in

xi (t) can bias the tests if this constraint is not satis¯ed. The alternative hypothesis is that

the baseline hazard for a \¯nancially constrained" group of ¯rms is lower than the baseline

hazard for an \unconstrained" group. Structuring the null and alternative hypotheses in this

way is crucial, because none of my sample-splitting variables will produce perfect sorting of

observations into constrained and unconstrained groups. As emphasized in the introduction,

the structure of the null implies that imperfect sorting will only lower the power of the tests

but will not a®ect the size.

The ¯rst experiment along this line is a comparison of small single-segment ¯rms who

di®er in their dividend policies. Because dividend payment is prima facia evidence of the

availability of internally generated funds, one can assume that a ¯rm that never distributes

cash to its shareholders will be more likely to need external ¯nance than one that does. I

group small ¯rms according to whether they have a consistent history of paying dividends

or not. Because share repurchases can be thought of as a substitute for dividends, I add

repurchases to dividends when splitting the sample. The \constrained" group consists of

observations from ¯rms with a consistent history of no cash distributions before the end

of an inaction spell. The \unconstrained" group consists of all other observations. Using

lagged distribution behavior as a classi¯cation variable mitigates the simultaneity problem

that arises because distributions and investment are joint decisions. In other words, this

sample splitting variable is at the very least predetermined, if not exogenous. Table 5 shows

that the estimated baseline hazards for both groups are upward sloping and that those for

the dividend group are higher than those for the no-dividend group. These di®erences are

signi¯cant at the ¯ve percent level in all but two instances. This di®erence is illustrated in
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Figure 6, which shows the baseline hazards for the two standard deviation threshold.

Second, I split my sample of small ¯rms once again on the basis of size in an identical

manner as before. I use ¯rm size in part because it has been used by numerous authors as

a measure of ¯nancial constraints, in part because it is arguably exogenous to the current

investment decision, and in part because I want to determine whether aggregation e®ects

are present in my sample of small ¯rms. One can argue that it is possible for a small ¯rm

or segment to be a compilation of even smaller sub-segments. Although the upward sloping

hazards for the small ¯rms and segments suggest that this scenario is implausible, I explore

this possiblity further by noting that if the sub-segment problem is important (and ¯nance

constraints are not), then tiny ¯rms should have higher hazards than the ¯rms that are

merely small. Table 6 reveals that this is not the case: the \micro" ¯rms have lower hazards

than rest of the small ¯rms. These di®erences are signi¯cant at the ¯ve percent level in all

but three instances. Illustrated in Figure 7 for the two standard deviation threshold, this

result suggests strongly that aggregation does not a®ect my sample of small ¯rms and that

the \micro" ¯rms face more serious external ¯nance constraints than the rest of the small

¯rms.

Third, I run separate hazard models on my group of small single-segment ¯rms and

a group of same-sized segments of conglomerates. This experiment is based on the idea

that large conglomerates have better relationships with external capital markets than small

single-segment ¯rms, thus allowing the conglomerate segments access to less costly ¯nance.

Estimates from these models are in Table 7, which shows that the ¯rms have lower hazard

rates than the segments. Here, the di®erences are signi¯cant at the ¯ve percent level in all

but four of the twenty-one instances. The di®erence in the hazard rates for the two standard

deviation threshold is illustrated in Figure 8. To the extent that belonging to a conglomerate

is an indicator of easy access to ¯nance, these results also are consistent with the idea that

external ¯nance constraints can a®ect investment. However, although tangentially related to

the idea in Williamson (1975) that conglomerates operate internal capital markets, the result

says little about the e±ciency of internal capital markets, since any test of e±ciency needs

to compare the behavior of all the segments within a ¯rm. At the very least, it appears that
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internal capital markets are not ine±cient enough to render the behavior of small segments

the same as the behavior of small single-segment ¯rms.

It is worth asking whether conglomerate segments and stand-alone ¯rms too fundamen-

tally di®erent to be compared via a simple model. On one hand Maksimovic and Phillips

(2002) provide evidence that small peripheral conglomerate segments tend to be less produc-

tive than main segments. More importantly for the current results, they ¯nd that investment

is much more responsive to productivity for single-segment ¯rms than it is for small conglom-

erate segments. On the other, my model does allow for di®erential sensitivity of spell length

to my measure of investment opportunities. Further, the Maksimovic and Phillips results

pertain to a comparison of small segments to all stand-alone ¯rms, whereas my comparison

is of small segments to small stand-alones. Finally, my results are not an artifact of the seg-

ments belonging to di®erent industries than the ¯rms. I do include industry dummies, and

eighty-nine percent of the two-digit industries represented by the sample of small ¯rms are

also represented by the sample of small segments, and eighty-eight percent of the two-digit

industries represented by the sample of small segments are also represented by the sample

of small ¯rms.

Two further issues arise in interpreting all of these results. First, a possible alternative

explanation is based on the idea that ¯rms respond to ¯nance constraints by undertaking

more often projects that are reduced in size but that still qualify as spikes. In that case

constrained ¯rms should have higher hazards, and the interpretations of all of the above

results should be reversed. From a theoretical point of view, however, this policy is only

optimal if the ¯rm faces convex adjustment costs, or if the cost of external ¯nance is convex

and greater than a nonconvex physical adjustment cost. Since convex costs induce downward

sloping hazards, and since all of the subsamples of ¯rms and segments have upward sloping

hazards, this explanation is unlikely. Second, it is important to know how much the di®erent

groups invest both during an inactivity spell and a spike. For example, suppose that no group

is \constrained" and that the groups labeled \constrained" either invest more in the o®-spike

periods or invest more during the spike periods than the \unconstrained" groups. Either

scenario could lead to spikes that are spaced further apart, even in the absence of ¯nance
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constraints. To examine this issue I compare the mean o®-spike and on-spike investment

rates of the three pairs of groups. Because I ¯nd no statistical di®erences, I am comfortable

concluding that this explanation is not driving my results.11

As an additional test I include as an explanatory variable lagged net liquid assets: net

working capital less inventories, where this quantity is expressed as a fraction of total assets.

The intent is to see if accumulation of liquid assets precedes an investment spike. I do

not split the sample in this case, since liquid assets are a continuous variable and have no

clear break point. As noted in the introduction, liquid assets can have two opposing e®ects

on the height of the hazard. First, small ¯rms with low liquid asset positions may have

limited access to debt markets, presumably because they lack the collateral to back their

borrowing. Therefore, liquid assets should have a positive coe±cient in the hazard model.

Further, an accumulation of liquid assets can indicate the presence of ¯nancial constraints if

the ¯rm needs to save the funds for a large project rather than obtaining them externally.

This behavior is also consistent with a positive coe±cient. In contrast, Opler, Pinkowitz,

Stulz, and Williamson (1999) note that ¯rms with access to external ¯nancial markets do

not need to keep stocks of liquid assets on hand. In this case the coe±cient on liquid assets

should be negative. An insigni¯cant coe±cient could mean one of two things: the above two

e®ects o®set one another, or ¯nance and investment are independent. The results from a

model that includes liquid assets are in Table 8. As in the other hazard models for the small

single-segment ¯rms, the estimated hazards slope upwards. Note the positive estimates of

the coe±cients on liquid assets, which are signi¯cant for the 1 and 1.5 standard deviation

thresholds. This result supports the role of liquid assets as a sign of ¯nancial health or saving

behavior, and it is consistent with the presence of external ¯nance constraints.

Finally, I examine the e®ect of the lagged (book) debt-to-assets ratio on the hazard.

Here, either the debt-overhang problem of Myers (1977), the truncation e®ect in Hennessy

11Two other popular splitting variables include the existence of a corporate bond rating
and the index of ¯nacial constraints in Kaplan and Zingales (1997). I cannot use the ¯rst
because very few of the small ¯rm have bond ratings. I choose not to use the second, because
it is endogenously determined with investment, because it contains Tobin's q as a component,
and because of evidence that Tobin's q is a very noisy measure of investment opportunities.
See Erickson and Whited (2000, 2002).
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(2002), or the e®ects of credit constraints summarized in Gertler (1988) ought to lower

the hazard. Although looking at the e®ect of debt on the hazard cannot distinguish these

three e®ects, doing so is nonetheless interesting in that can provide evidence on the broader

question of whether the Modigliani-Miller theorem is empirically important or not. As shown

in Table 9, for all three spike thresholds, lagged debt appears with a large negative coe±cient.

If capital structure were irrelevant, then one would expect to see a positive e®ect as ¯rms

borrow to fund projects. However, the negative e®ect is at the very least consistent with a

view of a world with ¯nancial frictions.

VI. Conclusion

This paper has tackled the question of the interaction between ¯nance and investment from

a new angle|one that examines the timing of large investment projects. One contribution of

this di®erent approach is its basis in a realistic view of ¯rm investment decisions. Instead of

relying on predictions from models with smooth costs of adjustment, the paper operates on

the assumption that the most important costs of adjusting the capital stock are ¯xed. This

choice stems from the intuitive observation that external ¯nance constraints are more likely

to a®ect large investment projects than incremental additions to the capital stock. A second

advantage is of this approach deals with measurement issues. I have argued that because

my model o®ers guidance in ¯nding a simple, easily measured control for productivity, the

measurement issues are not as severe as those facing regressions of investment on q. Finally,

for researchers interested in the interaction between ¯nance and investment, a new angle

appears necessary, given the contradictory and inconclusive evidence from a decade and a

half of cash-°ow sensitivity tests.

Within this framework I use a simple theoretical model to show that, ceteris paribus,

costly external ¯nance lowers the hazard function for investment spikes. In other words,

given that a ¯rm has not undertaken a large investment project for a certain length of time,

it is less likely to undertake another if it faces costly external ¯nance than if it does not. I

also demonstrate that the aggregation of decisions in large ¯rms can mask this result.

I take this idea to data by using a hazard model in which I control for ¯rm size, in-
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dustry, macroeconomic e®ects, and an arguably good proxy for productivity. First, I ¯nd

evidence of lumpy investment in ¯rm-level data, which adds credence to the idea of test-

ing for ¯nancial constraints in the context of ¯xed costs of physical adjustment. Second,

I ¯nd that aggregation of asynchronous decisions a®ects investment hazards. As predicted

by my ¯xed-costs model, small single-segment ¯rms have upward sloping hazards; and large

single-segment ¯rms and conglomerates have lower hazards than small single-segment ¯rms.

This result casts doubt on the common practice of using size as a proxy for access to ex-

ternal capital markets and begs for further research into the widely found \¯rm size e®ect"

on investment. The most important result is evidence that access to cheap ¯nance lowers

investment hazards. Small single-segment ¯rms that distribute cash to shareholders have

signi¯cantly higher hazards than small single-segment ¯rms that do not. In addition, very

small single segment ¯rms have lower hazards than the rest of the small single segment ¯rms;

and small segments have signi¯cantly higher hazards than their stand-alone counterparts.

Finally, lagged stocks of liquid assets raise hazards, and lagged stocks of debt lower hazards.

In sum, the paper has provided a new type of evidence that access to external ¯nance

does indeed in°uence ¯rms' real investment decisions. Because looking for evidence of ¯nance

constraints in the context of models with real nonconvexities appears to be fruitful, future

research could indeed explore other ways to exploit these models. Once avenue consists of

looking at plant-level data. Another, more methodological avenue is structural estimation.

One challenge to structural estimation is the lack of closed-form solutions for many models

with nonconvexities|a challenge possibly solved with simulation estimators.
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Appendix

Production takes place according to

¦ (K; z) = zKµ: (8)

Ideally, I would like to estimate µ with my data from COMPUSTAT. However, because

these data do not contain su±cient information on payments to variable factors to estimate

a production function, I follow Cooper and Haltiwanger (2002) and set µ = 0:5.

Next I consider the ¯nancing function, whose shape requires considerably more thought.

External ¯nance may be more costly than internal ¯nance for several reasons. First, informa-

tion asymmetries may external investors to require a \lemons" premium. Similarly, external

investors may require premia because external equity exacerbates manager-shareholder con-

°icts, and because debt can cause underinvestment problems. Second, monitoring costs are

important for bank loans, and transactions costs are important for seasoned debt and equity

o®erings, as well as bank loans. Because little research has been done to quantify the ¯rst

type of costs, I follow Gomes (2001) and focus only on transactions costs. This strategy will

provide a very conservative estimate of the costs of external ¯nance. To quantify these costs

I use the estimates in Altinkilic and Hansen (2000) for seasoned equity issues. (See their

Table 2.) Their regression results imply an external ¯nance function of the form

Á (e) = 0:0341 + 0:0241 (e) ; (9)

where e is a dummy variable for the gross amount of ¯nancing as a percentage of ¯rm assets.

To ¯nd a value for the ¯xed cost, c, I turn to the estimates in Cooper and Haltiwanger (2002)

and set c = 0:05: Finally, I set the discount rate equal to 6%, which implies a discount factor

¯ = 0:943; and I set the depreciation rate equal to the average in my data of depreciation

divided by total assets: 0.047. Fifty percent changes in the above parameters result in

identical qualitative conclusions.

Next, I specify a stochastic process for the shock, z: Following Caballero and Leahy

(1996), I assume that z follows an AR(1) in logs,

ln (z0) = 0:61 ln (z) + u0; (10)
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where u0 » N (0; 0:112) : I obtain the autoregressive parameter and the error variance from

my data by performing a panel autoregression of the variable ln
³
Sales/Assetsµ

´
; see Holtz-

Eakin, Newey, and Rosen (1988).

Finally, to ¯nd a numerical solution I need to specify a ¯nite state space for the two

state variables. I let the capital stock lie on the points

h
k¤ (1 ¡ d)30 ; : : : ; k¤ (1 ¡ d)2 ; k¤ (1 ¡ d) ; k¤; k¤/ (1 ¡ d) ; : : : ; k¤/ (1 ¡ d)30

i
;

where k¤ is the steady-state capital stock of a model without any adjustment costs. I let the

productivity shock have 61 points of support, transforming (10) into a discrete-state Markov

chain using the method in Tauchen (1986).
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Figure 1
Theoretical Adjustment Hazards

Single Segment Firms
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The hazard functions are simulated from the investment model in Section 2.
The horizonatal axis measures the length of time since the last investment spike,
and the vertical axis measures the probability of a spike, given that the ¯rm has
remained inactive up to that time. \Baseline" refers to a ¯rm without costly
external ¯nance, and \constrained" refers to a ¯rm with costly external ¯nance.
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Figure 2
Theoretical Adjustment Hazards

Conglomerates
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The hazard functions are simulated from the investment model in Section 2.
The horizonatal axis measures the length of time since the last investment spike,
and the vertical axis measures the probability of a spike, given that the ¯rm has
remained inactive up to that time. \Baseline" refers to a ¯rm without costly
external ¯nance, and \constrained" refers to a ¯rm with costly external ¯nance.
A \large" conglomerate contains six units, and a \small" conglomerate contains
two units.
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Figure 3
Theoretical Adjustment Hazards

Single Segment Firms
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The hazard functions are simulated from the investment model in Section 2.
The horizonatal axis measures the length of time since the last investment spike,
and the vertical axis measures the probability of a spike, given that the ¯rm has
remained inactive up to that time. \Baseline" refers to a ¯rm without costly
external ¯nance. All other hazards result from perturbations of the basic model.
\Productive" refers to a ¯rm with a shock to total factor productivity with a
mean of 0.1 instead of 0. \High cost" refers to a ¯rm with a doubled ¯xed cost of
adjustment, and \high depreciation" refers to a ¯rm with a doubled depreciation
rate.
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Figure 4
Theoretical and "Estimated" Adjustment Hazards
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The constrained and unconstrained hazard functions are simulated from the
investment model in Section 2. The \estimated" constrained and unconstrained
hazard functions are estimated using the methods described in Section 4, with
data simulated from the investment model in Section 2 The horizonatal axis
measures the length of time since the last investment spike, and the vertical axis
measures the probability of a spike, given that the ¯rm has remained inactive up
to that time.
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Figure 5
Estimated Hazards

Heterogeneity versus No Heterogeneity
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Estimates are from the two-standard-deviation threshold columns of Table
3. \Heterogeneity" refers to estimates from a model that allows for unobserv-
able cross-sectional heterogeneity. \No Heterogeneity" refers to estimates from a
model that does not. The horizonatal axis measures the length of time since the
last investment spike, and the vertical axis measures the probability of a spike,
given that the ¯rm has remained inactive up to that time. Calculations are based
on a sample of single-segment non-¯nancial ¯rms from the combined annual and
full coverage 2001 Standard and Poor's COMPUSTAT industrial ¯les that are
also covered by COMPUSTAT'S Business Information File. The sample period
is 1983 through 1997.
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Figure 6
Estimated Hazards

Dividends versus No Dividends
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Estimates are from the two-standard-deviation threshold columns columns of
Table 5. \No Dividends" refers to estimates from a sample of small single-segment
¯rms that consistently pay no dividends. \Dividends" refers to estimates from a
sample of small single-segment ¯rms that does pay dividends. The horizonatal
axis measures the length of time since the last investment spike, and the vertical
axis measures the probability of a spike, given that the ¯rm has remained inactive
up to that time. Calculations are based on a sample of single-segment non-
¯nancial ¯rms from the combined annual and full coverage 2001 Standard and
Poor's COMPUSTAT industrial ¯les that are also covered by COMPUSTAT'S
Business Information File. The sample period is 1983 through 1997.
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Figure 7
Estimated Hazards

Micro versus Small Firms
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Estimates are from the twenty percent threshold columns of Table 6. \Micro
Firms" refers to estimates from a sample of small single-segment ¯rms whose
assets are below the 33rd percentile of small single-segment ¯rms in the ¯rst year
they appear in the sample. \Other Small Firms" refers to estimates from the rest
of the sample of small single-segment ¯rms. The horizonatal axis measures the
length of time since the last investment spike, and the vertical axis measures the
probability of a spike, given that the ¯rm has remained inactive up to that time.
Calculations are based on a sample of single-segment non-¯nancial ¯rms from
the combined annual and full coverage 2001 Standard and Poor's COMPUSTAT
industrial ¯les that are also covered by COMPUSTAT'S Business Information
File. The sample period is 1983 through 1997.
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Figure 8
Estimated Hazards

Small Firms versus Small Segments
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Estimates are from the twenty percent threshold columns of Table 7. \Small
Firms" refers to estimates from a sample of small single-segment ¯rms. \Small
Segments" refers to estimates from a sample of small segments of conglomerates.
The horizonatal axis measures the length of time since the last investment spike,
and the vertical axis measures the probability of a spike, given that the ¯rm
has remained inactive up to that time. Calculations are based on a sample of
single-segment non-¯nancial ¯rms from the combined annual and full coverage
2001 Standard and Poor's COMPUSTAT industrial ¯les that are also covered by
COMPUSTAT'S Business Information File. The sample period is 1983 through
1997.
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Table 1: Summary Statistics

Calculations are based on a sample of non-¯nancial ¯rms and segments of ¯rms from the
combined annual and full coverage 2001 Standard and Poor's COMPUSTAT industrial ¯les
that are also covered by COMPUSTAT's Business Information File. The sample period is
1983 through 1997. Assets are expressed in millions of 1997 dollars.

Mean Median Standard Deviation
Small Single-Segment Firms
Investment/Assets 0.071 0.041 0.092
Depreciation/Assets 0.054 0.041 0.055
Cash Flow 0.144 0.168 0.285
Sales Growth 0.103 0.058 0.357
Assets 14.563 9.869 14.988
Large Single-Segment Firms
Investment/Assets 0.083 0.063 0.076
Depreciation/Assets 0.052 0.044 0.036
Cash Flow 0.177 0.183 0.144
Sales Growth 0.103 0.067 0.260
Assets 1,096 161.2 5,507
Multiple-Segment Firms
Investment/Assets 0.073 0.059 0.062
Depreciation/Assets 0.048 0.044 0.030
Cash Flow 0.168 0.173 0.107
Sales Growth 0.055 0.043 0.228
Assets 3,655 356.8 12,763
Small Segments
Investment/Assets 0.074 0.044 0.097
Depreciation/Assets 0.062 0.047 0.065
Cash Flow 0.181 0.169 0.372
Sales Growth 0.070 0.036 0.331
Assets 12.093 8.249 13.101
Large Segments
Investment/Assets 0.079 0.061 0.088
Depreciation/Assets 0.056 0.049 0.039
Cash Flow 0.187 0.170 0.181
Sales Growth 0.062 0.041 0.246
Assets 1,330 265.6 4,373
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Table 2: Investment Spikes and Inaction Spells

Calculations are based on a sample of non-¯nancial ¯rms and segments of
¯rms from the combined annual and full coverage 2001 Standard and Poor's
COMPUSTAT industrial ¯les that are also covered by COMPUSTAT's
Business Information File. The sample period is 1983 through 1997. SD
stands for standard deviation.
Threshold 1 SD 1.5 SD's 2 SD's
Small Single-Segment Firms
Fraction of Spikes 0.110 0.069 0.046
Number of Spells 634 387 240
Average Length 3.106 3.703 4.283
Fraction Censored 0.383 0.475 0.558
Average Length Censored 5.066 5.549 6.112
Fraction Uncensored 0.617 0.525 0.442
Average Length Uncensored 1.887 2.030 1.972
Large Single-Segment Firms
Fraction of Spikes 0.107 0.057 0.031
Number of Spells 1541 782 392
Average Length 2.930 3.693 4.541
Fraction Censored 0.356 0.468 0.594
Average Length Censored 5.290 5.844 6.464
Fraction Uncensored 0.644 0.532 0.406
Average Length Uncensored 1.627 1.800 1.723
Multiple-Segment Firms
Fraction of Spikes 0.069 0.035 0.020
Number of Spells 667 316 174
Average Length 3.724 4.380 4.598
Fraction Censored 0.433 0.528 0.575
Average Length Censored 6.232 6.790 6.690
Fraction Uncensored 0.567 0.472 0.425
Average Length Uncensored 1.807 1.678 1.770
Small Segments
Fraction of Spikes 0.126 0.083 0.058
Number of Spells 841 550 360
Average Length 2.810 3.236 3.517
Fraction Censored 0.346 0.424 0.464
Average Length Censored 4.715 5.034 5.401
Fraction Uncensored 0.654 0.576 0.536
Average Length Uncensored 1.802 1.915 1.886
Large Segments
Fraction of Spikes 0.097 0.050 0.028
Number of Spells 1886 921 491
Average Length 2.690 3.130 3.580
Fraction Censored 0.323 0.401 0.473
Average Length Censored 5.039 5.480 5.871
Fraction Uncensored 0.677 0.599 0.527
Average Length Uncensored 1.567 1.560 1.529
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Table 3: Semiparametric Hazard Model Estimates: Small Single-Segment Firms

Calculations are based on a sample of non-¯nancial ¯rms from the combined annual and full coverage
2001 Standard and Poor's COMPUSTAT industrial ¯les that are also covered by COMPUSTAT's
Business Information File. The sample period is 1983 through 1997. The rows labeled exp(°i)
contain estimates of the baseline hazard, where the subscript refers to the number of years since the
last spike. The row labeled ¾2 contain estimates of the variance of cross-sectional heterogeneity of
the hazards. Standard errors are in parentheses under the parameter estimates.

Heterogeneity No Heterogeneity
Threshold 1 1.5 2 1 1.5 2
Pro¯t 1.1788 1.1662 1.2082 2.0711 2.2921 2.0842

(0.1291) (0.0992) (0.1874) (1.5167) (1.5102) (1.7173)

exp(°1) 0.0484 0.0332 0.0360 0.3204 0.3957 0.2079
(0.0053) (0.0048) (0.0074) (0.0129) (0.0139) (0.0388)

exp(°2) 0.0827 0.0644 0.0568 0.2774 0.3572 0.3921
(0.0111) (0.0062) (0.0052) (0.0093) (0.0085) (0.0271)

exp(°3) 0.0644 0.1459 0.1861 0.1686 0.1476 0.2875
(0.0040) (0.0092) (0.0143) (0.0084) (0.0132) (0.0174)

exp(°4) 0.1170 0.2100 0.1796 0.2021 0.2099 0.0880
(0.0087) (0.0074) (0.0078) (0.0102) (0.0140) (0.0059)

exp(°5) 0.2314 0.3121 0.4553 0.0657 0.0695 0.0202
(0.0128) (0.0114) (0.0171) (0.0034) (0.0048) (0.0010)

exp(°6) 0.5188 0.4420 0.5776 0.0219 0.0178 0.0107
(0.0418) (0.0176) (0.0289) (0.0011) (0.0010) (0.0007)

exp(°7) 0.7992 0.6212 0.6513 0.0033 0.0031 0.0025
(0.0547) (0.0279) (0.0660) (0.0001) (0.0001) (0.0001)

¾2 1.5483 2.1808 2.1476
(0.0705) (0.1203) (0.1267)

Log-likelihood -395.5552 -232.1355 -158.5503 -727.9671 -476.7745 -240.5989
Sample Size 634 387 240 634 387 240
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Table 4: Semiparametric Hazard Model Estimates: Firms Grouped by Size and Diversi¯cation

Calculations are based on a sample of non-¯nancial ¯rms from the combined annual and full coverage
2000 Standard and Poor's COMPUSTAT industrial ¯les that are also covered by COMPUSTAT's
Business Information File. The sample period is 1984 through 1997. The rows labeled exp(°i)
contain estimates of the baseline hazard, where the subscript refers to the number of years since the
last spike. The row labeled ¾2 contain estimates of the variance of cross-sectional heterogeneity of
the hazards. Standard errors are in parentheses under the parameter estimates.

Large Single-Segment Firms Conglomerates
Threshold 1 1.5 2 1 1.5 2
Pro¯t 1.9077 2.1001 2.6044 2.5286 2.1885 2.1008

(0.0611) (0.1273) (0.3050) (0.0395) (0.0515) (0.1508)

exp(°1) 0.0654 0.0576 0.0478 0.0507 0.0558 0.0294
(0.0035) (0.0045) (0.0067) (0.0044) (0.0101) (0.0066)

exp(°2) 0.0296 0.0169 0.0253 0.0222 0.0258 0.0319
(0.0023) (0.0025) (0.0055) (0.0028) (0.0057) (0.0088)

exp(°3) 0.0254 0.0213 0.0106 0.0181 0.0595 0.0616
(0.0019) (0.0031) (0.0031) (0.0020) (0.0155) (0.0196)

exp(°4) 0.0266 0.0256 0.0183 0.0181 0.0605 0.0373
(0.0018) (0.0035) (0.0051) (0.0018) (0.0181) (0.0096)

exp(°5) 0.0168 0.0324 0.0145 0.0293 0.0149 0.0243
(0.0012) (0.0052) (0.0028) (0.0057) (0.0031) (0.0104)

exp(°6) 0.0156 0.0077 0.0193 0.0216 0.0464 0.0972
(0.0012) (0.0011) (0.0036) (0.0029) (0.0121) (0.0254)

exp(°7) 0.6183 0.4830 0.5427 0.6006 0.9900 0.3012
(0.0236) (0.0255) (0.0787) (0.0341) (0.1127) (0.0151)

¾2 0.0215 -0.0085 0.1646 0.0530 1.2398 1.3799
(0.1272) (0.0323) (0.3435) (0.1151) (0.1366) (0.1511)

Log-likelihood -1503.3714 -721.6725 -304.7923 -624.3225 -254.5687 -134.2939
Sample Size 1541 782 392 667 316 174
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Table 5: Semiparametric Hazard Model Estimates: Small Single-Segment Firms Grouped by Lagged Dividend Payout

Calculations are based on a sample of non-¯nancial ¯rms from the combined annual and full coverage
2001 Standard and Poor's COMPUSTAT industrial ¯les that are also covered by COMPUSTAT's
Business Information File. The sample period is 1983 through 1997. The rows labeled exp(°i)
contain estimates of the baseline hazard, where the subscript refers to the number of years since the
last spike. The row labeled ¾2 contain estimates of the variance of cross-sectional heterogeneity of
the hazards. Standard errors are in parentheses under the parameter estimates.

No Dividends Dividends
Threshold 1 1.5 2 1 1.5 2
Pro¯t 0.8655 0.1162 1.7650 2.8625 2.4908 1.6925

(0.1159) (0.2404) (0.0743) (0.0466) (0.0478) (0.0490)

exp(°1) 0.0514 0.0421 0.0530 0.0129 0.0082 0.0053
(0.0058) (0.0063) (0.0113) (0.0030) (0.0025) (0.0023)

exp(°2) 0.0812 0.0703 0.0873 0.0658 0.0329 0.0196
(0.0080) (0.0077) (0.0161) (0.0054) (0.0050) (0.0045)

exp(°3) 0.0542 0.0496 0.0831 0.3122 0.3667 0.2875
(0.0034) (0.0041) (0.0058) (0.0112) (0.0154) (0.0137)

exp(°4) 0.1046 0.1217 0.0574 0.7447 0.8247 0.8192
(0.0050) (0.0069) (0.0070) (0.0219) (0.0329) (0.0911)

exp(°5) 0.1448 0.1053 0.2540 0.8980 0.5785 0.6390
(0.0068) (0.0080) (0.0091) (0.0295) (0.0367) (0.0220)

exp(°6) 0.2667 0.4651 0.3907 0.6121 0.7811 0.8983
(0.0128) (0.0472) (0.1208) (0.0220) (0.0322) (0.0597)

exp(°7) 0.3666 0.4012 0.5189 0.8704 0.7150 0.8430
(0.0180) (0.0165) (0.0219) (0.0187) (0.0237) (0.0388)

¾2 1.4373 1.5859 1.7377 3.1691 3.9116 4.6803
(0.0759) (0.1126) (0.1555) (0.1556) (0.2643) (0.3730)

Log-likelihood -219.6960 -112.0266 -93.6215 -199.3434 -114.3573 -83.2705
Sample Size 344 198 121 290 189 119
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Table 6: Semiparametric Hazard Model Estimates: Micro versus Small Single-Segment Firms

Calculations are based on a sample of non-¯nancial ¯rms from the combined annual and full coverage
2001 Standard and Poor's COMPUSTAT industrial ¯les that are also covered by COMPUSTAT's
Business Information File. The sample period is 1983 through 1997. The rows labeled exp(°i)
contain estimates of the baseline hazard, where the subscript refers to the number of years since the
last spike. The row labeled ¾2 contain estimates of the variance of cross-sectional heterogeneity of
the hazards. Standard errors are in parentheses under the parameter estimates.

Micro Firms Other Small Firms
Threshold 1 1.5 2 1 1.5 2
Pro¯t 1.1400 1.1979 0.9050 0.7777 1.8894 1.9006

(0.1225) (0.1309) (0.1965) (0.1169) (0.0432) (0.0525)

exp(°1) 0.0358 0.0263 0.0287 0.0588 0.1064 0.0812
(0.0050) (0.0050) (0.0080) (0.0064) (0.0063) (0.0051)

exp(°2) 0.0799 0.1301 0.0865 0.0704 0.1472 0.1149
(0.0123) (0.0264) (0.0213) (0.0114) (0.0086) (0.0068)

exp(°3) 0.1292 0.1134 0.1130 0.1075 0.2523 0.1906
(0.0085) (0.0069) (0.0115) (0.0086) (0.0106) (0.0105)

exp(°4) 0.1522 0.1846 0.2082 0.2887 0.3185 0.3137
(0.0068) (0.0119) (0.0188) (0.0141) (0.0125) (0.0118)

exp(°5) 0.1231 0.1229 0.1107 0.8331 0.4632 0.3052
(0.0055) (0.0065) (0.0078) (0.0907) (0.0193) (0.0161)

exp(°6) 0.2488 0.1813 0.2066 0.8552 0.6044 0.4446
(0.0226) (0.0130) (0.0218) (0.0501) (0.0239) (0.0224)

exp(°7) 0.3906 0.2965 0.3245 0.8269 0.8187 0.6065
(0.0129) (0.0173) (0.0232) (0.0407) (0.0321) (0.0304)

¾2 1.7606 2.0963 2.3346 1.7725 2.8410 3.0492
(0.1211) (0.1772) (0.2939) (0.1031) (0.1281) (0.1848)

Log-likelihood -165.9726 -92.5980 -54.3223 -238.1268 -133.3418 -113.6867
Sample Size 251 152 99 383 235 141
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Table 7: Semiparametric Hazard Model Estimates: Small Single-Segment Firms versus Small Segments

Calculations are based on a sample of non-¯nancial ¯rms from the combined annual and full coverage
2000 Standard and Poor's COMPUSTAT industrial ¯les that are also covered by COMPUSTAT's
Business Information File. The sample period is 1984 through 1997. The rows labeled exp(°i)
contain estimates of the baseline hazard, where the subscript refers to the number of years since the
last spike. The row labeled ¾2 contain estimates of the variance of cross-sectional heterogeneity of
the hazards. Standard errors are in parentheses under the parameter estimates.

Single-Segment Firms Segments
Threshold 1 1.5 2 1 1.5 2
Pro¯t 1.1788 1.1662 1.2082 1.0793 0.9003 0.7572

(0.1291) (0.0992) (0.1874) (0.0385) (0.0331) (0.0398)

exp(°1) 0.0484 0.0332 0.0360 0.1033 0.0974 0.0937
(0.0053) (0.0048) (0.0074) (0.0095) (0.0118) (0.0148)

exp(°2) 0.0827 0.0644 0.0568 0.1723 0.1808 0.1912
(0.0111) (0.0062) (0.0052) (0.0048) (0.0063) (0.0078)

exp(°3) 0.0644 0.1459 0.1861 0.2850 0.2524 0.1956
(0.0040) (0.0092) (0.0143) (0.0075) (0.0077) (0.0085)

exp(°4) 0.1170 0.2100 0.1796 0.4813 0.4493 0.4422
(0.0087) (0.0074) (0.0078) (0.0112) (0.0129) (0.0158)

exp(°5) 0.2314 0.3121 0.4553 0.6258 0.5531 0.5355
(0.0128) (0.0114) (0.0171) (0.0147) (0.0160) (0.0190)

exp(°6) 0.5188 0.4420 0.5776 0.9252 0.9223 0.7437
(0.0418) (0.0176) (0.0289) (0.0215) (0.0283) (0.0263)

exp(°7) 0.7992 0.6212 0.6513 0.7458 0.7336 0.8185
(0.0547) (0.0279) (0.0660) (0.0181) (0.0212) (0.0273)

¾2 1.5483 2.1808 2.1476 1.8406 2.0691 2.2292
(0.0705) (0.1203) (0.1267) (0.0489) (0.0891) (0.1186)

Log-likelihood -395.5552 -232.1355 -158.5503 -660.5470 -383.9469 -231.8074
Sample Size 634 387 240 841 550 360
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Table 8: Semiparametric Hazard Model Estimates: Liquid Asset and Debt Models

Calculations are based on a sample of non-¯nancial ¯rms and segments of conglomerates from the
combined annual and full coverage 2001 Standard and Poor's COMPUSTAT industrial ¯les that
are also covered by COMPUSTAT's Business Information File. The sample period is 1983 through
1997. The rows labeled exp(°i) contain estimates of the baseline hazard, where the subscript refers
to the number of years since the last spike. The row labeled ¾2 contain estimates of the variance
of cross-sectional heterogeneity of the hazards. The \¯nancial variable" for the ¯rst model is the
ratio of liquid assets to total assets, and the \¯nancial variable" for the second model is the book
value of total long-term debt divided by total assets. Standard errors are in parentheses under the
parameter estimates.

Liquid Asset Model Debt Model
Threshold 1 1.5 2 1 1.5 2
Pro¯t 1.2831 1.0291 1.2446 1.1782 0.8086 1.0788

(0.0661) (0.1014) (0.1465) (0.1134) (0.1214) (0.1837)

Financial Variable 0.1077 0.0626 0.0512 -0.7021 -0.6190 -1.4434
(0.0257) (0.0344) (0.0397) (0.0490) (0.0582) (0.1245)

exp(°1) 0.0918 0.0737 0.0788 0.0388 0.0293 0.0348
(0.0086) (0.0097) (0.0131) (0.0035) (0.0039) (0.0067)

exp(°2) 0.0865 0.0902 0.0617 0.0399 0.0366 0.0644
(0.0026) (0.0039) (0.0137) (0.0019) (0.0027) (0.0137)

exp(°3) 0.0766 0.0828 0.1365 0.0487 0.0807 0.0774
(0.0023) (0.0041) (0.0108) (0.0022) (0.0047) (0.0130)

exp(°4) 0.1125 0.1130 0.1365 0.0910 0.1162 0.1185
(0.0034) (0.0045) (0.0058) (0.0035) (0.0045) (0.0110)

exp(°5) 0.1685 0.1763 0.0663 0.1536 0.1795 0.0464
(0.0052) (0.0058) (0.0052) (0.0048) (0.0064) (0.0054)

exp(°6) 0.3160 0.2463 0.2728 0.3523 0.2568 0.2882
(0.0059) (0.0056) (0.0113) (0.0128) (0.0095) (0.0281)

exp(°7) 0.4813 0.4571 0.5351 0.5195 0.4103 0.5730
(0.0145) (0.0175) (0.0325) (0.0242) (0.0199) (0.0438)

¾2 1.1924 1.3702 1.3911 1.4001 1.8898 1.8273
(0.0667) (0.0987) (0.1080) (0.0690) (0.1061) (0.1294)

Log-likelihood -372.3053 -230.0274 -143.0770 -327.4210 -214.6607 -134.9850
Sample Size 634 387 240 634 387 240
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